
Exception Handling



Contents

• Overview of Exception Handling

• Basic Structure of Try, Throw, and Catch Model w. Examples

• Rethrowing an Exception

• C++ Standard Exceptions and Exception Specifications

• Stack Unwinding



Exception Handling Overview

• Intermixing program logic with 
error handling logic can make the 
program difficult to read, modify, 
maintain and debug.

• Exception handling enables you to 
remove error-handling code from 
the “main line” of the program’s 
execution.

• Choose—all exceptions, all 
exceptions of a certain type or all 
exceptions of a group of related 
types.



Exception: Try, throw, catch MODEL

Exception Parameter



Throw Point

Termination Model of Exception Handling



Termination Model of Exception Handling

Also, called Resumption Model

• Throw Point: Program control does not return to the point at which the exception 
occurred because the try block has expired.

• Control resumes with the first statement after the last catch handler following the 
try block



Example: Division by ZERO

// what() member function



Example: 
Division by 

ZERO



Example: Division by ZERO



Exception Handling: When to Use

• For synchronous errors, which occur when a statement executes.

Examples: errors are out-of-range array subscripts, arithmetic overflow, division by 
zero, invalid function parameters and unsuccessful memory allocation.

• Not for asynchronous events

Examples: Disk I/O completions, network message arrivals, mouse clicks and 
keystrokes.

• Also, for processing problems that occur when a program interacts with software 
elements, such as member functions, constructors, destructors and classes



Rethrowing an Exception

• An exception handler, might decide either that it cannot process that exception or
that it can process the exception only partially. 

• The exception handler can defer the exception handling to another exception 
handler by rethrowing the exception

Note: An exceptional handler can call C++ standard exceptions.



C++ Standard Exceptions

• exception: An exception and parent class of all the standard C++ exceptions.

• logic_error: An exception that theoretically can be detected by reading the code.

• runtime_error: An exception that theoretically can not be detected by reading the code.



Example: 
Rethrowing
an Exception



Exception Specifications

• An optional exception specification enumerates a list of exceptions that a function 
can throw

• unexpected function call: If the function throws an exception that does not belong 
to a specified type. (program termination)

• No exception: an empty exception specification

throw()

throw list

??How to process unexpected Exceptions
Do Yourself



Stack Unwinding

• A call stack is a stack data structure that stores information about the active 
functions.

• The main reason for having a call stack is to keep track of the point to which each 
active function should return control when it completes executing.



Stack 
Unwinding



Example: Stack Unwinding



Example: Stack Unwinding


