Concepts of Random Process
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WSS Gaussiddandom Process

If a Gaussian r.p. is WSS, then it is stationary (Strict
Sense Stationary)

Proof: 1 o
exp{—5(z —m)' K~ (z —m)}
fx(z) = ——
BT
mx (t1) Cx(t1,t1) Cx (t1,tn)
m = : K = : :
B mX(tn) _ N CX(tnatl) CX(tnatn) |
I X(f) Is WSS, then mx(tl) — mx(tg) = - =M,

Cx(ti,t;) = Cx(t; — t;). SO0 fx(xz) does not depend on
the choice of the time origin = Strict Sense

Stationary.



Cyclostationary)Random Processes

A Thejoint CDFof any set of samplesis invariantwith respectto shifts of the origin
by integer multiples of someperiod T.

Fx(t). x(t)..... xt) (X1, X2, -, X)

= FX(I1+mT),X(rz+mT),_ --,X(fk+mT)(x1 5 X2y enny xk)_

A WSSyclostationaryif

.1‘1'“1)((1L + H”IT) — mx(t)

Cx(ty + mT,t, + mT) = Cx(t1, t5).

Note that if a RPis cyclostationary then it follows that RPis also wide-sense
cyclostationary



CyclostationaryRandom Processes

X (t) = Acos(2mtIT).

Consider the joint cdf for the time samples e I:

P[X 1) = xl,X(t?_) = X35..., X(fk) = xk)]
[A cos(2mt)/T) = x4, ..., A cos(2m/T) = x;]

(t
P
P[Acos(2m(ty + mT)IT) = xq,..., Acos(2m(ty + mT)IT) = x;]
P

(X(ty + mT) = x;, X(t, + mT) = x,,..., X(tpy + mT) = x;].



Continuity of RP

Recall that for X, Xo,--- , X}, - -
X, — X in m.s. (mean square) if E[(X,, — X)?] — 0,
aS n — oo

Cauchy Criterion

If E[(X,, — X,n)?] — 0as n — oo and m — oo, then
{X,,} converges in m.s.

Mean Square Continuity

The r.p. X(¢) is continuous att =ty in m.s. if

E[(X(t) - X(t0))"] — 0, ast— to
We wrtie it as: Lim.;_,;, X (t) = X(tp) (limit in the
mean)



Continuity of RP

Mean square continuity at does
not imply all sample functions are
continuous at —




Continuity of RP

Condition for mean square continuity
E[(X(t)—X(t0))’] = Rx(t,t)—Rx (to,t)—Rx (t, to)+Rx (to, to)
If Rx(t1,t2) is continuous (both in ¢, ¢2), at point
(to.t0), then E[(X(t) — X(t9))?] — 0. So X (t) is
continuous at ¢ty in m.s. if Rx(¢1,t2) is continuous at
(to, to)
If X(¢) is WSS, then:
E[(X(to +7) — X(t))’] = 2(Rx(0) — Rx(7))
So X (t) is continuous at ¢y, if Rx(7) is continuous at
7T =10




Continuity of RP

If X(¢) is continuous at o in m.s., then
lim mx (t) = mx (o)

t—>t0

Proof:

= E[X(t) — X(to)]* < E[(X(t) — X(t0))*] — 0
= (mx(t) — mx(to))* — 0
= mX(t) — mx(t())



Mean Square Derivative

The mean square derivative X’(t) of the r.p. X () is

defined as:
X/() = Lim, 2 +e) = X{)

e—0 £

(X(t +e) - X(t) X,(t))Q} .

3

provided that

lim F

e—0

The mean square derivative of X (t) at ¢ exists if
— dt =—Rx(t1,t2) exists at point (¢,1).
Proof: read on your own.

For a Gaussian random process X (t), X'(t) is also
Gaussian



Mean Square Derivative

Mean, cross-correlation, and auto-correlation of X'(¢)

d

mx(t) = dth(t)
0
Rxx:(ti,t2) = g — Rx (t1,t2)
to
/ 0?
R (t1,t2) = 8tlat2RX(tlat2)
When X (t) is WSS,
me(t) = O
9, d
RXXr(T) = 5 RX(tl—tQ) d_RX(T)
2 T
0 0 d?
Rx/(1) = o {6t2RX(t1 — tQ)} = —PRX(T)



Mean Square Derivative

afz fz < tl

Rx(t, ) = amin(ty, ) = {atl 6=t

Example: Wiener Process
Rx(t1,t2) = amin(ty, ty) = a%RX(tl’ to) = au(ty — t2)
2
u(-) is the step function and is discontinuous at
t1 = to. If we use the delta function,
0
er(h,tg) = a—tlau(tl,tg) = Cl—‘CS(tl — ig)
Note X'(¢) is not physically feasible since
E[X'(t)?] = aé(0) = o0, i.e., the signal has infinite
power. When t; # to, RXf(fl,tg) =0= X’(tl), X’(tg)
uncorrelated (note mx(¢) = 0 for all t) = independent
since X'(t) is a Gaussian process.

X'(t) is the so called White Gaussian Noise.



Mean Squaréntegrals

The mean square integral of X (¢) form ¢, to ¢:
Y(t) = j;n X (¢")dt" exists if the integral

j;ﬂ j;o Rx (u,v)dudv exists.

The mean and autocorrelation of Y ()
t

my (t) = mx (t")dt’

t1 pto
Ry (t1,t2) = / / Rx (u,v)dudv
to Jto



Ergodic Process

Timeaverages converge to trensemble averagéexpected value).

00 R 1 N
E[X(1)] = [mfo(,)(x)dx, my(r) = E; X(t, &)

(X = 57 | X0 dr



Ergodic Process

A X(t)=A for all t, where A is a zemeean, unitvariance RV

The mean of the process is(t=E[X(t)]=E[A]=0

1

(X (1)) = % [ Adi= A

The process is stationary but not ergodic!



Ergodicity in WSS Process

Let X(7) be a WSS process. The expected value of (X (1)) is

T
E[(X(0)r] = E[zT I X(t)d:] o7 [ Ex @1 = m.




Ergodicity in WSS Process
VAR[(X /T/TCXr—r)drdr

IJ
—2T:r—r'/ S O=1—1
s /
% /
s /
7 2T
// VAR[(X ()] = 15 | (2T = lul)Cx(w) du
Ve i,
o 2T
-T / T 1 lu |)
7 = — 1-— d
7 . o —2.T( o )Cx() du.
y u=1-—t | utdu=i—1
s ,2T=t—1t
7 /
i — e




Ergodicity in WSS Process

Theorem
Let X(¢r) be a WSS process with my(t) = m, then
lim (X (1)) = m

in the mean square sense, if and only if

lim ! 2T(l |H|)C du =0
T—F'DGZT 2T 2T X(H) “w==

A If so, then, a WSS process is mean ergodic



Random Process Expansion in Fourier Series

E[(X(t+T) - X(1)*] =0. £
[(X(t+T) = X()'] X() = S Xl

k:—OCI

where the coefficients are random variables defined by

1 T
Xk — _/ X(rr)e—ﬁwkt’f’f‘ dt'.
I Jo

A If X(t) is mean square periodic, thénz is a periodic functiomn z with period T

oo

RX(T) — 2 akejZWkaT,

k=—00

where the coefficients a; are given by

T
a, = ?/ RX(tr)e—ﬁwkwT dt'.
0



Random Process Expansion in Fourier Series



